4-Week AI Sprint Plan: From Machine Learning to LLM Fine-tuning
Overview
I have designed a comprehensive 4-week AI learning sprint plan focused on AI technology stack, independent of blockchain. Each week has clear learning objectives and output requirements, reinforcing theoretical knowledge through practical projects.
Week 1 — Machine Learning Fundamentals & Data Processing
Deliverables
- 1 notebook: Linear/Logistic regression from scratch (NumPy) + scikit-learn implementation on a public dataset
- Evaluation criteria: Regression RMSE ≤ baseline*0.9; Classification F1 ≥ 0.85 (80/20 split)
Daily Schedule
- Day 1: Environment setup + Python/NumPy review
- Day 2: pandas data cleaning & visualization
- Day 3: Implement Logistic Regression from scratch (GD/regularization)
- Day 4: sklearn Pipeline/cross-validation/feature scaling/grid search
- Day 5: End-to-end project on a small dataset (UCI/Wine/Titanic)
Environment & Framework
# Create new environment
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -U numpy pandas scikit-learn matplotlib seaborn jupyter
# sklearn quick binary classification template
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
X, y = ... # Load your features and labels
X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
clf = make_pipeline(StandardScaler(), LogisticRegression(max_iter=200))
clf.fit(X_tr, y_tr)
print(classification_report(y_te, clf.predict(X_te)))
Week 2 — PyTorch Introduction (CV/NLP)
Deliverables
- 1 notebook: Train a small model with PyTorch (MNIST/CIFAR10)
- Evaluation criteria: MNIST Acc ≥ 98% or CIFAR10 Acc ≥ 80%
Daily Schedule
- Day 1: Tensor/Autograd/optimizers
- Day 2: DataLoader/Transforms
- Day 3: MLP/CNN training loop
- Day 4: Regularization (Dropout, Augmentation)
- Day 5: Reproduction & hyperparameter tuning
Training Loop Framework
# PyTorch minimal training loop
import torch, torch.nn as nn, torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
device = 'cuda' if torch.cuda.is_available() else 'cpu'
train_ds = datasets.MNIST(root='data', train=True, download=True,
transform=transforms.ToTensor())
test_ds = datasets.MNIST(root='data', train=False, download=True,
transform=transforms.ToTensor())
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True)
test_dl = DataLoader(test_ds, batch_size=256)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Flatten(),
nn.Linear(28*28, 256), nn.ReLU(),
nn.Linear(256, 128), nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x): return self.net(x)
model = MLP().to(device)
opt = optim.Adam(model.parameters(), lr=1e-3)
loss_fn = nn.CrossEntropyLoss()
for epoch in range(5):
model.train()
for xb, yb in train_dl:
xb, yb = xb.to(device), yb.to(device)
opt.zero_grad(); loss = loss_fn(model(xb), yb)
loss.backward(); opt.step()
# evaluation
model.eval(); correct = total = 0
with torch.no_grad():
for xb, yb in test_dl:
xb, yb = xb.to(device), yb.to(device)
pred = model(xb).argmax(1)
correct += (pred == yb).sum().item(); total += yb.size(0)
print(f"epoch {epoch+1} acc={correct/total:.4f}")
Week 3 — NLP Fine-tuning (Small Models)
Deliverables
- 1 notebook: Fine-tune a small Transformer (e.g., DistilBERT) for sentiment classification/intent recognition
- Evaluation criteria: F1 ≥ 0.90; Export inference.py (command-line prediction)
Daily Schedule
- Day 1: Text cleaning/tokenization
- Day 2: datasets & transformers training
- Day 3: Early stopping/learning rate/weight decay
- Day 4: Error analysis
- Day 5: Package inference script
LoRA Fine-tuning Example (Memory-friendly)
pip install -U torch datasets transformers peft accelerate evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model
import evaluate
ds = load_dataset("sst2") # or your own dataset
tok = AutoTokenizer.from_pretrained("distilbert-base-uncased")
def preprocess(ex):
out = tok(ex["sentence"], truncation=True, padding="max_length", max_length=128)
out["labels"] = ex["label"]; return out
ds = ds.map(preprocess, batched=True)
ds = ds.remove_columns(["sentence"])
metric = evaluate.load("glue", "sst2")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
lora_cfg = LoraConfig(r=8, lora_alpha=16, target_modules=["q_lin","v_lin","k_lin"], lora_dropout=0.1, bias="none")
model = get_peft_model(model, lora_cfg)
args = TrainingArguments(
output_dir="out", per_device_train_batch_size=16, per_device_eval_batch_size=32,
num_train_epochs=3, learning_rate=3e-4, evaluation_strategy="epoch",
logging_steps=50, save_strategy="epoch", fp16=True
)
def compute_metrics(eval_pred):
import numpy as np
logits, labels = eval_pred
preds = logits.argmax(-1)
return metric.compute(predictions=preds, references=labels)
trainer = Trainer(model=model, args=args, train_dataset=ds["train"], eval_dataset=ds["validation"],
tokenizer=tok, compute_metrics=compute_metrics)
trainer.train()
trainer.save_model("ckpt")
Week 4 — Mini LLM Practice (Lightweight LoRA + Simple Demo)
Deliverables
Fine-tune a small model (e.g., TinyLlama-1.1B or Qwen2.5-0.5B) with LoRA for instruction tuning (small sample, demonstration focused).
- Build a Gradio web interface: input instruction → output response
- Write 1 English blog post (documenting data construction, training details, performance comparison)
Daily Schedule
- Day 1: Model selection/prepare instruction data (1-5k toy data)
- Day 2: LoRA training (PEFT), quantized loading (4bit/8bit)
- Day 3: Gradio Demo
- Day 4: Comparison & error analysis
- Day 5: Blog + README
Gradio Demo Example
pip install -U gradio
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # or your LoRA merged weights
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
def chat(prompt):
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9)
return tok.decode(out[0], skip_special_tokens=True)
gr.Interface(fn=chat, inputs="text", outputs="text", title="Mini LLM Demo").launch()
Repository Structure (Unified Management)
ai-sprint/
├── week1_ml/
│ ├── 01_numpy_regression.ipynb
│ ├── 02_sklearn_pipeline.ipynb
├── week2_pytorch/
│ ├── mnist_train.ipynb
│ └── mnist_train.py
├── week3_nlp/
│ ├── finetune_distilbert_lora.ipynb
│ └── inference.py
├── week4_llm/
│ ├── finetune_lora.md
│ └── app_gradio.py
├── blog/
│ └── 2025-08-LLM-mini-finetune.md
└── README.md
Evaluation & Outputs (Weekly Portfolio Items)
- Week 1: Tabular classification/regression baseline + model selection report
- Week 2: CV small model reproduction + hyperparameter tuning records
- Week 3: NLP fine-tuning + inference.py (command-line demo)
- Week 4: LoRA instruction fine-tuning + Gradio Demo + English blog
Execution Strategy
- Daily Check-in: Complete daily tasks and record learning notes
- Weekly Review: Check weekly goal completion and adjust next week's plan
- Project Accumulation: Organize each project into showcaseable works
- Technical Blogging: Document learning process and problem solutions
Expected Outcomes
- Master complete AI tech stack: from traditional ML to modern deep learning
- Gain practical project experience: showcaseable results at each stage
- Build learning system: foundation for future AI development
- Improve engineering capabilities: complete loop from theory to practice
This plan is both practical and challenging. I believe there will be significant progress after 4 weeks!